Non-financial Liabilities and Restructuring

Empirical support from 2005 Reform with the North America sample

Author

Hongyi Xu

Published

March 10, 2025

Modified

March 19, 2025

This analysis is suggested by discussant Samuel Antill in 2025 AFA meeting.

The previous versions can be found here.

S1. Download and Load the Raw Dataset

We download the firm-level capital structure from Compustat-CapitalIQ North America. The first measure of executory contracts is from the accounting data which (under U.S. GAAP) cover leases and rental contracts. We use the variables “Debt Equivalent of Operating Leases”, “Capital Leases” and “Net Rental Expenses”.

  • Debt - Capitalized Lease Obligations (dclo): This item represents long-term obligations due in respect of lease finances and hire purchase arrangements. This item includes:

    • Long-term finance lease obligations
    • Long-term lease financing
    • Long-term hire purchase obligations
    • Non-current obligations under capital leases
  • Rental Expense (xrent): This item represents all costs charged to operations for rental, lease, or hire of space and/or equipment. This item includes:

    • Airlines’ landing fees
    • Contingent rentals associated with capitalized leases
    • Lease charges and plant hire

    In the main test, we construct a new variable called total rent, which is defined as the total rental commitment mrc1 + mrc2 + mrc3 + mrc4 + mrc5 + mrct reported in year t.

  • Asset - Total (at): Book value of total assets.

  • Debt in Current Liabilities - Total (dlc) is for the short-term debt and Long-term debt - Total (dltt) is for the long-term debt.

  • Earnings Before Interest (EBITDA): EBITDA.

  • Industry classifications: naics, sic and spcindcd + (Fama-French 30 Industry Classifiers, To Be Added / Definition).

In this version we add a set of new variables:

  • Property, Plant, and Equipment - Leases at Cost (fatl) is the capitalized value of leases and leasehold improvements included in property, plant, and equipment, excluding equipment leased to others, and is not applicable to banks or utilities. > Definition

  • Property, Plant, and Equipment - Buildings at Cost (fatb). > Definition

  • Property, Plant, and Equipment - Land and Improvements at Cost (fatp).

  • Property, Plant, and Equipment - Buildings (Net) (ppenb).

  • Property, Plant, and Equipment - Land and Improvements (Net) (ppenli).

  • Property, Plant and Equipment - Total (Gross) (ppegt).

  • Property, Plant and Equipment - Total (Net) (ppent)

  • Loans/Claims/Advances - Lease (lcal). > Defintion >

Given that the policy shock happens under the US jurisdiction, we expect more significant treatment effect to be detected in this sample. The period used in Samuel’s slides is between 2002 and 2007, which is after the doc.com bubble and before the GFC. The variables in the dataset are:

Show the code
## create the data file path 
data_file <- "jpbdsuonrpztpw8t.csv" 
data_path <- file.path(work_dir, "Data", data_file)

## load the compustat_na data
compustat_na <- as_tibble(read.csv(file = data_path) ) # %>%
  # filter(fic == "USA" | loc == "USA" ) ## keep only US related observations (| fic == "CAN" | loc == "CAN")

## data file record: 
# | Mar 10, 2025 > jpbdsuonrpztpw8t.csv
# | Mar  9, 2025 > nfmss2xkmjgfjonh.csv 
# | Mar  5, 2025 > e3cdfjocaz4aboqh.csv 
# | Mar  3, 2025(2) > tbrl8c4xqurukptl.csv > more variables 
# | Mar  3, 2025(1) > evvvij0nqoe8sshv.csv
# | Feb 24, 2025 > azsyeo1yjmrb2q1v.csv 
# | Jan 14, 2025 > g4f68dkn3beu1iag.csv 

## load the FF_30ind data 
FF_30ind <- as_tibble(read.csv(file = file.path(work_dir, "Data", "ff_30ind.csv")))

## check the variable names 
cat("Variables include:\n\n")
sort(names(compustat_na)) 
cat("\nSample size: \n\n")
dim(compustat_na)
Variables include:

 [1] "act"      "at"       "bkvlps"   "ceq"      "che"      "cik"     
 [7] "conm"     "consol"   "costat"   "csho"     "curcd"    "cusip"   
[13] "datadate" "datafmt"  "dclo"     "dlc"      "dltt"     "dp"      
[19] "dvc"      "dvp"      "ebit"     "ebitda"   "fatb"     "fatl"    
[25] "fatp"     "fic"      "fyear"    "fyr"      "fyrc"     "gvkey"   
[31] "ib"       "indfmt"   "lcal"     "lct"      "loc"      "lt"      
[37] "mrc1"     "mrc2"     "mrc3"     "mrc4"     "mrc5"     "mrct"    
[43] "mrcta"    "naics"    "ni"       "oibdp"    "popsrc"   "ppegt"   
[49] "ppenb"    "ppenli"   "ppenls"   "ppent"    "prcc_f"   "re"      
[55] "revt"     "seq"      "sic"      "spcindcd" "tic"      "txdb"    
[61] "wcap"     "xrent"   

Sample size: 

[1] 165122     62

S2. Data Cleaning and Prep

Two dependent variables are constructed to measure firm’s leverage: (cf. p18 and Table 2 of the paper)

  • Book leverage: we define leverage as the ratio of the sum of short-term debt and long-term debt to assets (we drop observations where this is outside the [0,1] range)*.

  • Debt/EBITDA: we define debt-to-EBITDA as the ratio of the long- and short-term debt to EBITDA (we drop observations where this is outside the [0,15] range)*.

These restrictions are now imposed in all analyses. We use the full set of firms in the Compustat NA. We choose fyear - fiscal year - as the time variable of the dataset.

In this version, we set the base_year == 2004 instead of 2005, which is the year when the treatment happens. Based on the S.256 - Bankruptcy Abuse Prevention and Consumer Protection Act of 2005, the bill was first introduced on February 1, 2025 and was signed into law by President George W. Bush. on April 20, 2005. The act’s provisions applied to bankruptcy cases filed on or after October 17, 2005. > Wikipedia

Therefore, the treatment effects should first appear in the annual reports for the fiscal year 2005, as the treatment occurs in fiscal year 2004.

Then we create a list of variables required for the analysis:

Show the code
## set the base year 
base_year <- 2004 
period_start <- 2002
period_end <- 2007
intensity_measure_year <- 2000 # choose the base year for the intensity measure 
n_pre <- 1 # number of periods before the period_start in the iplot()  

## create leverage and control variables 
data <- compustat_na %>% 
  # filter(at >= 0) %>%
  filter(indfmt == "INDL") %>% ## remove all financial firms
  ## create the lagged `ppent` item: 
  group_by(gvkey) %>%
  arrange(fyear) %>%
  mutate(ppent_lag1 = lag(ppent, n = 1)) %>% 
  ungroup() %>% 
  ## create new variables: 
  mutate(
    ## leverage variables: 
    book_leverage = (dlc + dltt) / at, 
    debt_ebitda = (dlc + dltt) / ebitda, 
    
    ## treatment intensity: 
    totalrent = coalesce(mrc1, 0) + coalesce(mrc2, 0) + coalesce(mrc3, 0) + coalesce(mrc4, 0) + coalesce(mrc5, 0) + coalesce(mrcta, 0), # total rent w/o discount
    # contract_intensity = (dclo + xrent * 3) / at, # executory contract intensity
    contract_intensity = (coalesce(dclo, 0) + totalrent) / at, # executory contract intensity
    
    ### for the total: 
    ppe_lease_intensity = fatl / at, # PPE lease intensity 
    building_intensity = fatb / at, # only for buildings (i.e. properties), but only not only leased ones
    land_intensity = fatp / at, # only land intensity 
    bnl_intensity = building_intensity + land_intensity, 
    
    ### for the net: 
    # net_lease_intensity = ppenls / at, # net PPE lease intensity [not available after 1998]
    # net_building_intensity = ppenb / at, # net PPE building intensity [not available after 1998]  
    net_land_intensity = ppenli / at, # net PPE land intensity 
    
    ### for total PPE: 
    net_PPE_intensity = ppent / at, # net PPE intensity 
    PPE_intensity = ppegt / at, # gross PPE intensity 
    
    ### for lessors: 
    lessor_lease_intensity = lcal / at, # this is outstanding lease intensity to be received. 
    
    ## other variables and controls: 
    dyear = as.integer(substr(datadate, start = 1, stop = 4)), # data year 
    roa = ni / at, # return on asset (ROA) 
    tangibility = ppent / at, # tangibility  
    altman_Z = 
      # (3.3 * revt + 1.4 * re + 1.2 * wcap) / at, # Altman Z-score
      (3.3 * ebit + 1.4 * re + 1.2 * wcap + 0.6 * prcc_f * csho + 0.999 * revt), # Altman Z-score
    kz = -1.001909 * ((ib + dp)/ppent_lag1) + 0.2826389 * ((at + prcc_f*csho - ceq - txdb)/at) + 3.139193 * ((dltt + dlc)/(dltt + dlc + seq)) - 39.3678 * ((dvc + dvp)/ppent_lag1) - 1.314759 * (che/ppent_lag1), # KZ index 
    # hw = , # financial contraints (HW) 
    current_ratio = act / lct, # current ratio: current asset / current liabilites 
    market_book = (prcc_f*csho) / (ceq + txdb) # market-to-book
  ) 

## record the variable names 
cat("Variables Created:\n\n")
sort(setdiff(names(data), names(compustat_na))) 
Variables Created:

 [1] "altman_Z"               "bnl_intensity"          "book_leverage"         
 [4] "building_intensity"     "contract_intensity"     "current_ratio"         
 [7] "debt_ebitda"            "dyear"                  "kz"                    
[10] "land_intensity"         "lessor_lease_intensity" "market_book"           
[13] "net_land_intensity"     "net_PPE_intensity"      "PPE_intensity"         
[16] "ppe_lease_intensity"    "ppent_lag1"             "roa"                   
[19] "tangibility"            "totalrent"             

We propose several noisy measures of the PPE lease contract intensity:

  • ppe_lease_intensity: calculated as the Property, Plant, and Equipment - Leases at Cost (fatl) normalized by the total asset for firm i at year t. It measures the future lease obligations in PPE, but it is a noisy measure as it also includes equipment.

  • building_intensity: calculated as Property, Plant, and Equipment - Buildings at Cost (fatb) normalized by the total asset for firm i at year t.

  • land_intensity: calculated as Property, Plant, and Equipment - Land and Improvements at Cost (fatp) normalized by the total asset for firm i at year t.

  • bnl_intensity: calculated as the sum of Property, Plant, and Equipment - Land and Improvements at Cost (fatp) and Property, Plant, and Equipment - Buildings at Cost (fatb) normalized by the total asset (at) for firm i at year t.

  • oustanding_lease_intensity: calculated as the Loans/Claims/Advances - Lease (lcal) normalized by the total asset for firm i at year t. It measures the amount of lease obgliations to be collected by firm i in the future. You can view this sample as the lessor in the lease contract, while the previous variable, ppe_lease_intensity, captures the sample of lessees.

Although this will contain other items besides non-residential real property lease obligations, we believe that it is a potentially better measure for a firm’s exposure to this policy shock in 2005.

For definitions of controls, please refer to Section 4.

  • kz: KZ index:

-1.001909 \left( \frac{ib + dp}{\text{lagged } ppent} \right) + 0.2826389 \left( \frac{at + \text{prcc_f} \times \text{csho} - ceq - txdb}{at} \right) + 3.139193 \left( \frac{dltt + dlc}{dltt + dlc + seq} \right) - 39.3678 \left( \frac{dvc + dvp}{\text{lagged } ppent} \right) - 1.314759 \left( \frac{che}{\text{lagged } ppent} \right).

s2.1. Summary Statistics

Show the code
## summary statistics: 
data %>% 
  filter(book_leverage >= 0 & book_leverage <= 1) %>% 
  filter(at > 0 & ebitda > 0 & ppent_lag1 > 0 & lct > 0 & (ceq + txdb) > 0) %>% 
  select(
    book_leverage, debt_ebitda, 
    
    altman_Z, current_ratio, debt_ebitda, current_ratio, 
    debt_ebitda, kz, market_book, roa, tangibility, 
    
    contract_intensity, ppe_lease_intensity, bnl_intensity, 
    building_intensity, land_intensity, # lessor_lease_intensity 
    # net_land_intensity, net_PPE_intensity, PPE_intensity, ppent_lag1, 
  ) %>% 
  psych::describe(na.rm = TRUE) %>% 
  select(n, mean, `trimmed mean` = trimmed, median, sd) %>% 
  round(digits = 2) %>% 
  rownames_to_column(var = "Variable Name") %>% 
  gt() %>% 
  tab_header(
    title = "Table 1. Summary Statistics"
  ) %>% 
  tab_options(
    heading.align = "left"
  ) %>%
  cols_align(
    align = "center",
    columns = c("n", "mean", "trimmed mean", "median", "sd")
  ) 
Table 1. Summary Statistics
Variable Name n mean trimmed mean median sd
book_leverage 55396 0.23 0.22 0.22 0.19
debt_ebitda 55396 4.24 1.99 1.68 59.61
altman_Z 49803 7547.86 1935.28 757.81 31920.42
current_ratio 55210 2.53 1.95 1.73 11.97
kz 50384 -37.00 -2.26 -0.73 1823.05
market_book 50699 3.53 2.06 1.75 46.93
roa 55395 0.04 0.04 0.04 0.23
tangibility 55393 0.33 0.30 0.26 0.26
contract_intensity 55396 0.12 0.06 0.04 0.30
ppe_lease_intensity 34309 0.04 0.02 0.01 0.10
bnl_intensity 37670 0.12 0.08 0.06 0.18
building_intensity 37706 0.10 0.07 0.05 0.14
land_intensity 37815 0.02 0.01 0.01 0.06

s2.2. plot the distribution of different intensity measures

Show the code
candidate_intensity_measure <- c(
  "contract_intensity", 
  "ppe_lease_intensity", 
  "building_intensity", 
  "land_intensity",
  "bnl_intensity") 

for (measure in candidate_intensity_measure) {
  cat('\n')
  cat('#### ', measure, '   \n')
  cat('\n')
  
  data %>% 
    filter(fic == "USA" | loc == "USA" ) %>% 
    filter(fyear >= period_start & fyear <= period_end) %>% 
    filter(book_leverage >= 0 & book_leverage <= 1) %>% 
    filter(at > 0 & ebitda > 0 & ppent_lag1 > 0 & lct > 0 & (ceq + txdb) > 0) %>% 
    select(
      gvkey, fyear, 
      book_leverage, debt_ebitda, 
      
      altman_Z, current_ratio, debt_ebitda, current_ratio, 
      debt_ebitda, kz, market_book, roa, tangibility, 
      
      contract_intensity, ppe_lease_intensity, bnl_intensity, 
      building_intensity, land_intensity, # lessor_lease_intensity 
      # net_land_intensity, net_PPE_intensity, PPE_intensity, ppent_lag1, 
    ) %>% 
    na.omit() %>% 
    filter(contract_intensity >= 0) %>% 
    .[[measure]] %>% # selec the variable of interest 
    hist(., 
       prob = TRUE, # density plot
       col = "#E1DEFC",  
       main = "Density Histogram: data from Compustat NA", 
       xlab = paste(measure),
       ylab = "Density", 
       breaks = 100, # xlim = c(0, 8) 
     ) 
  
  # jpeg(filename = paste("Figure1_", id.names[c], ".jpeg", sep = ""), width = 550, height = 350)
  cat('\n')
} 

contract_intensity

ppe_lease_intensity

building_intensity

land_intensity

bnl_intensity

S3. Difference-in-Difference Examination

Then, we construct the dataset for the difference-in-difference analysis.

In this section, we use all observations without missing values in subsequent analyses.

The original dataset (data) contains observations with fiscal year (fyear) range in [1996, 2009] and we restrict the sample to the fiscal year in [2002, 2007].

s3.0. Executory contract intensity

contract_intensity is chosen to measure a firm’s executory contract intensity, which was expected to be impacted by the change in the bankruptcy code in 2005.

Show the code
## choose the group definition: 
intensity_measure_name <- candidate_intensity_measure[1]

data_firm <- data %>% 
  filter(fyear == intensity_measure_year) %>% # use `fyear` may create multiple observations for the same firm. E.g. filter(gvkey == 23535, dyear == 2005) 
  group_by(fyear) %>% 
  ## identify large and small firms based on its total asset in the year 2000 
  mutate(median_at = median(at, na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(large = ifelse(at > median_at, 1, 0)) %>% 
  select(gvkey, intensity_2000 = all_of(intensity_measure_name), large) 
  
data_did <- data %>% 
  ## merge the grouping variable 
  left_join(y = data_firm, by = join_by(gvkey) ) %>% 
  ## merge the FF 30 industry classifiaction 
  left_join(y = FF_30ind, by = join_by(sic)) %>% 
  ## exclude certain industries 
  filter(
    ff_30ind != 20, # exclude Utiltiy (number 20) 
    !(sic >= 6000 & sic <= 6199) # exclude banks under Banking, Insurance, Real Estate, Trading (number 29)
  ) %>% 
  ## pre- & post- 
  mutate(
    indexyear = (fyear - base_year), # year index with 2005 as base 0.
    post_2005 = as.numeric(fyear > base_year)  # whether it is after the 2005 reform 
  ) 

## gvkey(s) for balanced panel": 
data_did_balanced_id <- data_did %>% 
  filter(book_leverage >= 0 & book_leverage <= 1) %>% 
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>% 
  group_by(gvkey) %>% 
  summarise(count_obs = sum(!is.na(book_leverage) & !is.na(intensity_2000))) %>% 
  ungroup() %>% 
  filter(count_obs == period_end - period_start + 1 + n_pre) %>% 
  .$gvkey 

DiD Analysis:

Variable treated is defined as whether the firm has a positive contract_intensity in year 2004.

Show the code
cat(intensity_measure_name); cat(": \n"); 

did_model_s3z_a <- data_did %>% 
  filter(book_leverage >= 0 & book_leverage <= 1) %>% 
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, intensity_2000, post_2005, book_leverage, debt_ebitda, sic, ff_30ind_name, large) %>% 
  filter(fyear >= period_start & fyear <= period_end) %>% 
  mutate( 
    gvkey = as.factor(gvkey), 
    fyear = as.factor(fyear), 
    treated = as.numeric(intensity_2000 > 0) 
  ) %>% 
  fixest::feols(fml = book_leverage ~ treated*post_2005*large | gvkey + fyear + ff_30ind_name^fyear, data = ., cluster = c("gvkey", "ff_30ind_name")) 
  
did_model_s3z_b <- data_did %>% 
  filter(book_leverage >= 0 & book_leverage <= 1) %>% 
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, intensity_2000, post_2005, book_leverage, debt_ebitda, sic, ff_30ind_name, large) %>% 
  filter(fyear >= period_start & fyear <= period_end) %>% 
  mutate( 
    gvkey = as.factor(gvkey), 
    fyear = as.factor(fyear), 
    treated = as.numeric(intensity_2000 > 0) 
  ) %>% 
  fixest::feols(fml = book_leverage ~ intensity_2000*post_2005*large | gvkey + fyear + ff_30ind_name^fyear, data = ., cluster = c("gvkey", "ff_30ind_name")) 

mget(ls(pattern = "did_model_s3z_")) %>% 
  `names<-`(value = c("(a) treatment", "(b) intensity")) %>% 
  etable() %>% 
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>% 
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content 
    bootstrap_options = c("striped", "condensed")
  )
contract_intensity: 
DiD Results with `contract_intensity`
(a) treatment (b) intensity
Dependent Var.: book_leverage book_leverage
treated x post_2005 -0.0079 (0.0071)
post_2005 x large -0.0112 (0.0089) -0.0059 (0.0049)
treated x post_2005 x large 0.0074 (0.0082)
intensity_2000 x post_2005 -0.0010 (0.0040)
intensity_2000 x post_2005 x large 0.0035 (0.0058)
Fixed-Effects: ---------------- ----------------
gvkey Yes Yes
fyear Yes Yes
ff_30ind_name-fyear Yes Yes
__________________________________ ________________ ________________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3.
Observations 36,900 36,890
R2 0.80304 0.80314
Within R2 0.00025 0.00015

s3.1. PPE lease intensity

ppe_lease_intensity is chosen to measure a firm’s long-term exposure to lease contracts, especially non-residential real property lease obligations, which was expected to be impacted by the change in the bankruptcy code in 2005.

Show the code
## choose the group definition:
intensity_measure_name <- candidate_intensity_measure[2]

data_firm <- data %>%
  filter(fyear == intensity_measure_year) %>% # use `fyear` may create multiple observations for the same firm. E.g. filter(gvkey == 23535, dyear == 2005)
  group_by(fyear) %>%
  mutate(median_at = median(at, na.rm = TRUE)) %>%
  ungroup() %>%
  mutate(large = ifelse(at > median_at, 1, 0)) %>%
  select(gvkey, intensity_2000 = all_of(intensity_measure_name), large)

data_did <- data %>%
  ## merge the grouping variable
  left_join(y = data_firm, by = join_by(gvkey) ) %>%
  ## merge the FF 30 industry classifiaction
  left_join(y = FF_30ind, by = join_by(sic)) %>%
  ## exclude certain industries
  filter(
    ff_30ind != 20, # exclude Utiltiy (number 20)
    !(sic >= 6000 & sic <= 6199) # exclude banks under Banking, Insurance, Real Estate, Trading (number 29)
  ) %>%
  ## pre- & post-
  mutate(
    indexyear = (fyear - base_year), # year index with 2005 as base 0.
    post_2005 = as.numeric(fyear > base_year)  # whether it is after the 2005 reform
  )

## gvkey(s) for balanced panel":
data_did_balanced_id <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  group_by(gvkey) %>%
  summarise(count_obs = sum(!is.na(book_leverage) & !is.na(intensity_2000))) %>%
  ungroup() %>%
  filter(count_obs == period_end - period_start + 1 + n_pre) %>%
  .$gvkey

DiD Analysis:

Show the code
cat(intensity_measure_name); cat(": \n");

did_model_s3a_a <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, intensity_2000, post_2005, book_leverage, debt_ebitda, sic, ff_30ind_name, large) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    treated = as.numeric(intensity_2000 > 0)
  ) %>%
  fixest::feols(fml = book_leverage ~ treated*post_2005*large | gvkey + fyear + ff_30ind_name^fyear, data = ., cluster = c("gvkey", "ff_30ind_name"))

did_model_s3a_b <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, intensity_2000, post_2005, book_leverage, debt_ebitda, sic, ff_30ind_name, large) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    treated = as.numeric(intensity_2000 > 0)
  ) %>%
  fixest::feols(fml = book_leverage ~ intensity_2000*post_2005*large | gvkey + fyear + ff_30ind_name^fyear, data = ., cluster = c("gvkey", "ff_30ind_name"))

mget(ls(pattern = "did_model_s3a_")) %>%
  `names<-`(value = c("(a) treatment", "(b) intensity")) %>%
  etable() %>%
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>%
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content
    bootstrap_options = c("striped", "condensed")
  )
ppe_lease_intensity: 
DiD Results with `ppe_lease_intensity`
(a) treatment (b) intensity
Dependent Var.: book_leverage book_leverage
treated x post_2005 -0.0079 (0.0077)
post_2005 x large -0.0122 (0.0088) -0.0057 (0.0048)
treated x post_2005 x large 0.0149 (0.0101)
intensity_2000 x post_2005 -0.0312 (0.0218)
intensity_2000 x post_2005 x large 0.0982* (0.0367)
Fixed-Effects: ---------------- ----------------
gvkey Yes Yes
fyear Yes Yes
ff_30ind_name-fyear Yes Yes
__________________________________ ________________ ________________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3.
Observations 24,775 24,775
R2 0.78916 0.78917
Within R2 0.00029 0.00033

s3.2. building intensity

building_intensity is chosen to measure a firm’s long-term exposure to buildings at cost under the PPE.

Show the code
## choose the group definition:
intensity_measure_name <- candidate_intensity_measure[3]

data_firm <- data %>%
  filter(fyear == intensity_measure_year) %>% # use `fyear` may create multiple observations for the same firm. E.g. filter(gvkey == 23535, dyear == 2005)
  group_by(fyear) %>%
  mutate(median_at = median(at, na.rm = TRUE)) %>%
  ungroup() %>%
  mutate(
    large = ifelse(at > median_at, 1, 0), 
    exposed = ifelse(contract_intensity > 0, yes = "With_Contract", no = "Without_Contract")
    ) %>%
  select(gvkey, intensity_2000 = all_of(intensity_measure_name), large, exposed)

data_did <- data %>%
  ## merge the grouping variable
  left_join(y = data_firm, by = join_by(gvkey) ) %>%
  ## merge the FF 30 industry classifiaction
  left_join(y = FF_30ind, by = join_by(sic)) %>%
  ## exclude certain industries
  filter(
    ff_30ind != 20, # exclude Utiltiy (number 20)
    !(sic >= 6000 & sic <= 6199) # exclude banks under Banking, Insurance, Real Estate, Trading (number 29)
  ) %>%
  ## pre- & post-
  mutate(
    indexyear = (fyear - base_year), # year index with 2005 as base 0.
    post_2005 = as.numeric(fyear > base_year)  # whether it is after the 2005 reform
  )

## gvkey(s) for balanced panel":
data_did_balanced_id <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  group_by(gvkey) %>%
  summarise(count_obs = sum(!is.na(book_leverage) & !is.na(intensity_2000))) %>%
  ungroup() %>%
  filter(count_obs == period_end - period_start + 1 + n_pre) %>%
  .$gvkey

DiD Analysis:

Show the code
cat(intensity_measure_name); cat(": \n");

## create the combinations of parameters:
fml_parameters <- expand_grid(
  choice_treatment = c("intensity_2000", "treated"), # what is the treatment measure: continuous/binary
  controls_inclusion = c(FALSE, TRUE),# whether to include controls
  balanced_panel = c(FALSE, TRUE), # whether keep a balanced panel
) %>%
  arrange(balanced_panel) %>%
  cbind.data.frame(.,
    fml = apply(X = ., MARGIN = 1, FUN = function(parameters) {
      ## parameters:
      choice_treatment <- parameters[1]
      add_controls <- parameters[2]
      is_balanced <- parameters[3]

      ## inputs:
      fml_base <- paste("book_leverage ~ post_2005*", choice_treatment, sep = "") # the baseline model
      fml_base_controls <- " + roa + ebitda_at + log(at_thousand) + altman_Z + tangibility + current_ratio" # the potential controls
      fml_base_fe <- " | gvkey + indexyear + ff_30ind_name^indexyear" # fixed effects

      ## output formula:
      fml_output <- paste(
        fml_base,
        ifelse(add_controls == TRUE, yes = fml_base_controls, no = ""),
        fml_base_fe,
        sep = ""
      )

      return(fml_output)
    })
  ) %>%
  as_tibble() %>%
  ## assign a name for each regression:
  mutate(name = paste("(", 1:nrow(.), ")", sep = "")) %>%
  select(name, everything())

## construct the data used for the loop:
data_did_loop <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>% 
  # filter(building_intensity >= 0 & building_intensity <= 1) %>% 
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name, exposed, 
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

data_did_loop_balanced <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>% 
  # filter(building_intensity >= 0 & building_intensity <= 1) %>% 
  filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name, exposed, 
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

## store all results
fml_results <- fml_parameters %>%
  apply(MARGIN = 1, FUN = function(parameters) {
    ## parameters:
    is_balanced <- parameters[4]
    fml_formula <- parameters[5]

    ## data:
    if (is_balanced == TRUE) {
      data <- data_did_loop_balanced
    } else {
      data <- data_did_loop
    }

    ## regression:
    did_model <- fixest::feols(fml = formula(fml_formula),
                  data = data,
                  cluster = c("gvkey", "ff_30ind_name")
                  )
    return(did_model)
  })

### DiD result using post-:
fml_results %>%
  `names<-`(value = unlist(fml_parameters[,1])) %>%
  etable(
    order = "post",
    # keep = "post",
    se.below = TRUE, 
    # fontsize = "scriptsize", 
    extralines = list(
      ## Controls:
      "^_Controls" = ifelse(unlist(fml_parameters[,3]), yes = "Yes", no = "No"),
      ## the identity of the sample:
      "__Sample" = ifelse(unlist(fml_parameters[,4]), yes = "Balanced Panel", no = "Full Sample") # whether used a balanced panel or a full sample.
  )) %>%
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>%
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content
    bootstrap_options = c("striped", "condensed")
  )
building_intensity: 
DiD Results with `building_intensity`
(1) (2) (3) (4) (5) (6) (7) (8)
Dependent Var.: book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage
post_2005 x intensity_2000 -0.0732*** -0.0484* -0.0831*** -0.0498**
(0.0152) (0.0175) (0.0134) (0.0138)
post_2005 x treated -0.0220*** -0.0151*** -0.0170*** -0.0086
(0.0033) (0.0034) (0.0039) (0.0045)
roa 8.23e-5* 8.47e-5* -0.0020 -0.0020
(3.22e-5) (3.25e-5) (0.0013) (0.0013)
ebitda_at 0.0001 0.0001 0.0013 0.0013
(0.0001) (0.0001) (0.0019) (0.0018)
log(at_thousand) 0.0103 0.0100 0.0207** 0.0207**
(0.0054) (0.0055) (0.0065) (0.0067)
altman_Z -5.72e-7*** -5.31e-7*** -6.38e-7*** -6.29e-7***
(1.41e-7) (1.32e-7) (1.74e-7) (1.7e-7)
tangibility 0.2142*** 0.2147*** 0.1994*** 0.2020***
(0.0294) (0.0294) (0.0253) (0.0248)
current_ratio -9.44e-5** -9.45e-5** -5.9e-5** -5.92e-5**
(3.25e-5) (3.23e-5) (2.11e-5) (2.1e-5)
Controls No Yes No Yes No Yes No Yes
Fixed-Effects: ------------- ------------- ------------- ------------- ------------- ------------- ------------- -------------
gvkey Yes Yes Yes Yes Yes Yes Yes Yes
indexyear Yes Yes Yes Yes Yes Yes Yes Yes
ff_30ind_name-indexyear Yes Yes Yes Yes Yes Yes Yes Yes
__________________________ _____________ _____________ _____________ _____________ _____________ _____________ _____________ _____________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3.
Observations 26,682 24,190 26,682 24,190 19,500 17,893 19,500 17,893
R2 0.79236 0.76976 0.79244 0.76983 0.78470 0.76751 0.78448 0.76740
Within R2 0.00167 0.02186 0.00206 0.02215 0.00271 0.02402 0.00167 0.02355
Sample Full Sample Full Sample Full Sample Full Sample Balanced Panel Balanced Panel Balanced Panel Balanced Panel

All treatment effect estimates are significantly negative across all specifications.

Next we estimate the yearly treatment effects.

Individual Year Treatment Plots

Show the code
## create the combinations of parameters:
fml_parameters <- expand_grid(
  choice_treatment = c("intensity_2000", "treated"), # what is the treatment measure: continuous/binary
  controls_inclusion = c(FALSE, TRUE),# whether to include controls
  balanced_panel = c(FALSE, TRUE), # whether keep a balanced panel
) %>%
  arrange(balanced_panel) %>%
  cbind.data.frame(.,
    fml = apply(X = ., MARGIN = 1, FUN = function(parameters) {
      ## parameters:
      choice_treatment <- parameters[1]
      add_controls <- parameters[2]
      is_balanced <- parameters[3]

      ## inputs:
      fml_base <- paste("book_leverage ~ i(indexyear, ", choice_treatment, ", ref = -1)", sep = "") # the baseline model
      fml_base_controls <- " + roa + ebitda_at + log(at_thousand) + altman_Z + tangibility + current_ratio" # the potential controls
      fml_base_fe <- " | gvkey + indexyear + ff_30ind_name^indexyear" # fixed effects

      ## output formula:
      fml_output <- paste(
        fml_base,
        ifelse(add_controls == TRUE, yes = fml_base_controls, no = ""),
        fml_base_fe,
        sep = ""
      )

      return(fml_output)
    })
  ) %>%
  as_tibble() %>%
  ## assign a name for each regression:
  mutate(name = paste("(", letters[1:nrow(.)], ")", sep = "")) %>%
  select(name, everything())

fml_parameters
# A tibble: 8 × 5
  name  choice_treatment controls_inclusion balanced_panel fml                  
  <chr> <chr>            <lgl>              <lgl>          <chr>                
1 (a)   intensity_2000   FALSE              FALSE          book_leverage ~ i(in…
2 (b)   intensity_2000   TRUE               FALSE          book_leverage ~ i(in…
3 (c)   treated          FALSE              FALSE          book_leverage ~ i(in…
4 (d)   treated          TRUE               FALSE          book_leverage ~ i(in…
5 (e)   intensity_2000   FALSE              TRUE           book_leverage ~ i(in…
6 (f)   intensity_2000   TRUE               TRUE           book_leverage ~ i(in…
7 (g)   treated          FALSE              TRUE           book_leverage ~ i(in…
8 (h)   treated          TRUE               TRUE           book_leverage ~ i(in…
Show the code
## construct the data used for the loop:
data_did_loop <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005, exposed, 
         book_leverage, debt_ebitda, sic, ff_30ind_name, building_intensity, 
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity, contract_intensity, 
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  ) %>% 
  group_by(gvkey) %>%
  arrange(fyear) %>%
  mutate(d_building_intensity = building_intensity - lag(building_intensity, n = 1)) %>% 
  ungroup() 

data_did_loop_balanced <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005, exposed, 
         book_leverage, debt_ebitda, sic, ff_30ind_name, building_intensity, 
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity, contract_intensity, 
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  ) %>% 
  group_by(gvkey) %>%
  arrange(fyear) %>%
  mutate(d_building_intensity = building_intensity - lag(building_intensity, n = 1)) %>% 
  ungroup()

## store all results
fml_results <- fml_parameters %>%
  apply(MARGIN = 1, FUN = function(parameters) {
    ## parameters:
    is_balanced <- parameters[4]
    fml_formula <- parameters[5]

    ## data:
    if (is_balanced == TRUE) {
      data <- data_did_loop_balanced
    } else {
      data <- data_did_loop
    }

    ## regression:
    did_model <- fixest::feols(fml = formula(fml_formula),
                  data = data,
                  cluster = c("gvkey", "ff_30ind_name")
                  )
    return(did_model)
  })
NOTE: 3,233 observations removed because of NA and infinite values (RHS: 3,233).
NOTE: 3,233 observations removed because of NA and infinite values (RHS: 3,233).
NOTE: 1,941 observations removed because of NA and infinite values (RHS: 1,941).
NOTE: 1,941 observations removed because of NA and infinite values (RHS: 1,941).
Show the code
### create the table:
fml_results %>%
  `names<-`(value = unlist(fml_parameters[,1])) %>%
  etable(
    order = "indexyear",
    # keep = "post",
    se.below = TRUE, 
    extralines = list(
      ## Controls:
      "^_Controls" = ifelse(unlist(fml_parameters[,3]), yes = "Yes", no = "No"),
      ## the identity of the sample:
      "__Sample" = ifelse(unlist(fml_parameters[,4]), yes = "Balanced Panel", no = "Full Sample") # whether used a balanced panel or a full sample.
  )) %>%
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>%
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content
    bootstrap_options = c("striped", "condensed")
  )
DiD Results with `building_intensity`
(a) (b) (c) (d) (e) (f) (g) (h)
Dependent Var.: book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage
intensity_2000 x indexyear = -3 0.0378 0.0352* 0.0248 0.0251
(0.0187) (0.0168) (0.0311) (0.0331)
intensity_2000 x indexyear = -2 0.0066 -0.0103 0.0070 0.0005
(0.0113) (0.0156) (0.0159) (0.0160)
intensity_2000 x indexyear = 0 -0.0454* -0.0425** -0.0564** -0.0514**
(0.0165) (0.0133) (0.0179) (0.0147)
intensity_2000 x indexyear = 1 -0.0889*** -0.0770*** -0.0942*** -0.0679***
(0.0155) (0.0159) (0.0142) (0.0146)
intensity_2000 x indexyear = 2 -0.0806*** -0.0537 -0.1115*** -0.0771***
(0.0214) (0.0266) (0.0165) (0.0191)
intensity_2000 x indexyear = 3 -0.0785** -0.0505 -0.0930*** -0.0597*
(0.0262) (0.0329) (0.0209) (0.0267)
treated x indexyear = -3 0.0283*** 0.0289*** 0.0190*** 0.0224***
(0.0055) (0.0057) (0.0049) (0.0061)
treated x indexyear = -2 0.0038 0.0015 0.0040 0.0033
(0.0031) (0.0036) (0.0037) (0.0043)
treated x indexyear = 0 -0.0082* -0.0104* -0.0109** -0.0105**
(0.0032) (0.0042) (0.0034) (0.0034)
treated x indexyear = 1 -0.0244*** -0.0221*** -0.0162** -0.0102
(0.0045) (0.0049) (0.0053) (0.0059)
treated x indexyear = 2 -0.0203*** -0.0129* -0.0209** -0.0115
(0.0049) (0.0049) (0.0060) (0.0064)
treated x indexyear = 3 -0.0183** -0.0118 -0.0208*** -0.0129*
(0.0056) (0.0064) (0.0055) (0.0060)
roa 5.06e-5 5.25e-5 -0.0026 -0.0026
(3.2e-5) (3.19e-5) (0.0013) (0.0013)
ebitda_at 9.16e-5 9.61e-5 0.0022 0.0022
(9.98e-5) (0.0001) (0.0020) (0.0019)
log(at_thousand) 0.0080 0.0077 0.0180** 0.0180**
(0.0052) (0.0052) (0.0058) (0.0058)
altman_Z -6.02e-7** -5.37e-7** -5.96e-7** -5.48e-7*
(1.8e-7) (1.72e-7) (2.06e-7) (1.99e-7)
tangibility 0.2242*** 0.2238*** 0.1922*** 0.1941***
(0.0237) (0.0239) (0.0212) (0.0211)
current_ratio -0.0001* -0.0001* -7.57e-5* -7.71e-5*
(4.6e-5) (4.5e-5) (2.98e-5) (2.92e-5)
Controls No Yes No Yes No Yes No Yes
Fixed-Effects: ------------- ------------- ------------- ------------- ------------- ------------- ------------- -------------
gvkey Yes Yes Yes Yes Yes Yes Yes Yes
indexyear Yes Yes Yes Yes Yes Yes Yes Yes
ff_30ind_name-indexyear Yes Yes Yes Yes Yes Yes Yes Yes
_______________________________ _____________ _____________ _____________ _____________ _____________ _____________ _____________ _____________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3.
Observations 32,714 29,481 32,714 29,481 22,750 20,809 22,750 20,809
R2 0.77520 0.75234 0.77569 0.75298 0.76307 0.74687 0.76310 0.74714
Within R2 0.00242 0.02476 0.00460 0.02728 0.00380 0.02470 0.00393 0.02571
Sample Full Sample Full Sample Full Sample Full Sample Balanced Panel Balanced Panel Balanced Panel Balanced Panel
Show the code
### create the plots:
# fml_parameters[which(unlist(fml_parameters$balanced_panel)), ]
fml_results[which(unlist(fml_parameters$balanced_panel))] %>% # choose the balanced panel
  iplot(.,
        xlab = paste("Time to treatment (Year; 0 = ", base_year, ")", sep = ""),
        main = paste("Treatment Effects by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Balanced Panel",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE,
        xlim = c(period_start - n_pre - base_year - 0.5, period_end - base_year + 0.5)
        ); axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5)); abline(v = 0.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2, 3, 4), pch = c(20, 17, 15, 21), legend = c('intensity', 'intensity + controls', 'dummy', 'dummy + controls'));

Show the code
#### intensity only: 
fml_results[which(unlist(fml_parameters$balanced_panel))][1:2] %>% # choose the balanced panel
  iplot(.,
        xlab = paste("Time to treatment (Year; 0 = ", base_year, ")", sep = ""),
        main = paste("Treatment Effects by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Balanced Panel",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE,
        xlim = c(period_start - n_pre - base_year - 0.5, period_end - base_year + 0.5)
        ); axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5)); abline(v = 0.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2, 3, 4), pch = c(20, 17, 15, 21), legend = c('intensity', 'intensity + controls', 'dummy', 'dummy + controls')[1:2]);

Show the code
fml_results[which(!unlist(fml_parameters$balanced_panel))] %>% # choose full sample
  iplot(.,
        xlab = paste("Time to treatment (Year; 0 = ", base_year, ")", sep = ""),
        main = paste("Treatment Effect by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Full Sample",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE,
        xlim = c(period_start - n_pre - base_year - 0.5, period_end - base_year + 0.5)
        ); axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5)); abline(v = 0.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2, 3, 4), pch = c(20, 17, 15, 21), legend = c('intensity', 'intensity + controls', 'dummy', 'dummy + controls'))

We plot the yearly treatment effect estimates with different model specifications using both the balanced panel and the full sample. As the full sample will contain some firms with extremely high leverage and high building intensity before 2004, we believe that it is more reasonable to use a balanced sample for the analysis.

We conclude that the pre-trend assumption is not violated and we can see a significant negative treatment effect around 2005 (end of fiscal year 2004) and after 2005.

w/ and w/o Executory Contracts:

Show the code
did_model_subsample <- data_did_loop_balanced %>% 
  fixest::feols(fml = book_leverage ~ i(fyear, intensity_2000, ref = base_year - 1) +
                  roa + ebitda_at + log(at_thousand) +
                  altman_Z + tangibility + current_ratio |
                  gvkey + fyear + ff_30ind_name^fyear,
                data = .,
                cluster = c("gvkey", "ff_30ind_name"),
                split = ~ exposed # large
                )

did_model_subsample %>% etable(se.below = TRUE) 

did_model_subsample %>% 
  iplot(.,
        xlab = paste("Time to treatment (Year ", base_year, ")", sep = ""),
        main = paste("Treatment Effects by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Balanced Panel",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE
        # xlim = c(period_start - n_pre - 0.5, period_end + 0.5)
        ); 
# axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5));
abline(v = base_year - (period_start - n_pre) + 1.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2), pch = c(20, 17), legend = c('With Executory Contracts', 'Without Executory Contracts'));

Show the code
# Calculate the Wald statistics
model_large <- did_model_subsample[[1]]
model_small <- did_model_subsample[[2]]
## get the name of the coefficient of interests
coef_names <- names(model_large$coefficients) %>%
  .[str_detect(string = ., pattern = "::")]
coef_large <- coef(model_large)[coef_names]
coef_small <- coef(model_small)[coef_names]
# Difference in treatment effects
diff_coef <- coef_large - coef_small
# Variance of the difference
var_diff <- vcov(model_large)[coef_names, coef_names] + vcov(model_small)[coef_names, coef_names]
# Wald statistic for each treatment effect estimate
wald_stat <- (diff_coef)^2 / diag(var_diff)
wald_stat_vector <- c(t(diff_coef) %*% solve(var_diff) %*% (diff_coef))
# Degrees of freedom
df <- 1
df_vector <- length(diff_coef)
# P-value
p_value <- 1 - pchisq(wald_stat, df)
p_value_vector <- 1 - pchisq(wald_stat_vector, df_vector)

convert_p_to_stars <- function(p_values) {
  # Initialize a character vector to store the significance stars
  stars <- character(length(p_values))
  # Assign stars based on p-value thresholds
  stars[p_values < 0.001] <- "***"
  stars[p_values >= 0.001 & p_values < 0.01] <- "**"
  stars[p_values >= 0.01 & p_values < 0.05] <- "*"
  stars[p_values >= 0.05 & p_values < 0.1] <- "."
  stars[p_values >= 0.1] <- ""
  return(stars)
}

# Output results
cat("\n\nWald test for the difference in the treatment effect\n between the firms with and w/o executory contracts: \n\n")
data.frame(
  Diff = diff_coef,
  `Std. Error` = sqrt(diag(var_diff)),
  `Wald stat` = wald_stat,
  `P value` = p_value,
  Star = convert_p_to_stars(p_value)
) %>% 
  rbind.data.frame(., "Multipel Testing:" = c("", "", wald_stat_vector, p_value_vector, convert_p_to_stars(p_value_vector) )) %>% 
  mutate_if(is.numeric, round, digits = 4) 
cat("Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \n\n")


## Interacting with With/Withou Contracts:

data_did_loop_balanced %>% 
  fixest::feols(fml = book_leverage ~ intensity_2000 + post_2005 + exposed + post_2005*exposed + intensity_2000*exposed + intensity_2000:post_2005:i(exposed)
                + roa + ebitda_at + log(at_thousand) + altman_Z + tangibility + current_ratio 
                |
                  gvkey + fyear + ff_30ind_name^fyear, data = ., cluster = c("gvkey", "ff_30ind_name")) %>%

  etable()
                                            ..1               ..2
Sample (exposed)                  With_Contract  Without_Contract
Dependent Var.:                   book_leverage     book_leverage
                                                                 
intensity_2000 x fyear = 2001         0.0061            0.1398   
                                     (0.0308)          (0.0771)  
intensity_2000 x fyear = 2002        -0.0057            0.0210   
                                     (0.0110)          (0.0412)  
intensity_2000 x fyear = 2004        -0.0570**         -0.0186   
                                     (0.0161)          (0.0363)  
intensity_2000 x fyear = 2005        -0.0685***        -0.0567   
                                     (0.0158)          (0.0342)  
intensity_2000 x fyear = 2006        -0.0857***         0.0024   
                                     (0.0217)          (0.0715)  
intensity_2000 x fyear = 2007        -0.0517           -0.0624   
                                     (0.0325)          (0.0684)  
roa                                  -0.0036***        -0.0107   
                                     (0.0008)          (0.0081)  
ebitda_at                             0.0051**          0.0093   
                                     (0.0016)          (0.0084)  
log(at_thousand)                      0.0160*           0.0249** 
                                     (0.0064)          (0.0077)  
altman_Z                             -5.6e-7*          -7.97e-7**
                                     (2.17e-7)         (2.64e-7) 
tangibility                           0.2134***         0.1034*  
                                     (0.0262)          (0.0456)  
current_ratio                        -0.0002           -3.87e-5  
                                     (0.0001)          (2.14e-5) 
Fixed-Effects:                    -------------     -------------
gvkey                                       Yes               Yes
fyear                                       Yes               Yes
ff_30ind_name-fyear                         Yes               Yes
_____________________________     _____________     _____________
S.E.: Clustered               by: gvkey & ff_3. by: gvkey & ff_3.
Observations                             18,305             2,504
R2                                      0.74394           0.78623
Within R2                               0.02431           0.03693
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Wald test for the difference in the treatment effect
 between the firms with and w/o executory contracts: 

                                          Diff         Std..Error
fyear::2001:intensity_2000  -0.133686254578126 0.0830294948054943
fyear::2002:intensity_2000 -0.0266311248942029 0.0426951794477984
fyear::2004:intensity_2000 -0.0384391004064624 0.0396926094226278
fyear::2005:intensity_2000 -0.0118078811844638 0.0376501736654739
fyear::2006:intensity_2000 -0.0880064925721113 0.0746767239820241
fyear::2007:intensity_2000  0.0107054718275053 0.0757767497148007
Multipel Testing:                                                
                                    Wald.stat             P.value Star
fyear::2001:intensity_2000   2.59244004418414   0.107374804699341     
fyear::2002:intensity_2000   0.38906425866419   0.532791677573716     
fyear::2004:intensity_2000  0.937836495628827   0.332834861394349     
fyear::2005:intensity_2000 0.0983580661569842   0.753808987302022     
fyear::2006:intensity_2000   1.38886140914723   0.238597474476687     
fyear::2007:intensity_2000 0.0199590414220852   0.887651536133582     
Multipel Testing:             18.742409486575 0.00462152048484366   **
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

                                                                           .
Dependent Var.:                                                book_leverage
                                                                            
roa                                                        -0.0026. (0.0013)
ebitda_at                                                    0.0022 (0.0020)
log(at_thousand)                                           0.0180** (0.0057)
altman_Z                                                -6.06e-7** (2.08e-7)
tangibility                                               0.1937*** (0.0215)
current_ratio                                            -7.44e-5* (3.03e-5)
post_2005 x exposedWithout_Contract                          0.0046 (0.0070)
intensity_2000 x post_2005 x exposed = With_Contract     -0.0598*** (0.0137)
intensity_2000 x post_2005 x exposed = Without_Contract    -0.0718. (0.0394)
Fixed-Effects:                                          --------------------
gvkey                                                                    Yes
fyear                                                                    Yes
ff_30ind_name-fyear                                                      Yes
________________________________________                ____________________
S.E.: Clustered                                            by: gvkey & ff_3.
Observations                                                          20,809
R2                                                                   0.74672
Within R2                                                            0.02412
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

s3.3. land intensity

land_intensity is chosen to measure a firm’s long-term exposure to land and improvements at cost under the PPE.

Show the code
## choose the group definition:
intensity_measure_name <- candidate_intensity_measure[4]

data_firm <- data %>%
  filter(fyear == intensity_measure_year) %>% # use `fyear` may create multiple observations for the same firm. E.g. filter(gvkey == 23535, dyear == 2005)
  group_by(fyear) %>%
  mutate(median_at = median(at, na.rm = TRUE)) %>%
  ungroup() %>%
  mutate(large = ifelse(at > median_at, 1, 0)) %>%
  select(gvkey, intensity_2000 = all_of(intensity_measure_name), large)

data_did <- data %>%
  ## merge the grouping variable
  left_join(y = data_firm, by = join_by(gvkey) ) %>%
  ## merge the FF 30 industry classifiaction
  left_join(y = FF_30ind, by = join_by(sic)) %>%
  ## exclude certain industries
  filter(
    ff_30ind != 20, # exclude Utiltiy (number 20)
    !(sic >= 6000 & sic <= 6199) # exclude banks under Banking, Insurance, Real Estate, Trading (number 29)
  ) %>%
  ## pre- & post-
  mutate(
    indexyear = (fyear - base_year), # year index with 2005 as base 0.
    post_2005 = as.numeric(fyear > base_year)  # whether it is after the 2005 reform
  )

## gvkey(s) for balanced panel":
data_did_balanced_id <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  group_by(gvkey) %>%
  summarise(count_obs = sum(!is.na(book_leverage) & !is.na(intensity_2000))) %>%
  ungroup() %>%
  filter(count_obs == period_end - period_start + 1 + n_pre) %>%
  .$gvkey

DiD Analysis:

Show the code
cat(intensity_measure_name); cat(": \n");

## create the combinations of parameters:
fml_parameters <- expand_grid(
  choice_treatment = c("intensity_2000", "treated"), # what is the treatment measure: continuous/binary
  controls_inclusion = c(FALSE, TRUE),# whether to include controls
  balanced_panel = c(FALSE, TRUE), # whether keep a balanced panel
) %>%
  arrange(balanced_panel) %>%
  cbind.data.frame(.,
    fml = apply(X = ., MARGIN = 1, FUN = function(parameters) {
      ## parameters:
      choice_treatment <- parameters[1]
      add_controls <- parameters[2]
      is_balanced <- parameters[3]

      ## inputs:
      fml_base <- paste("book_leverage ~ post_2005*", choice_treatment, sep = "") # the baseline model
      fml_base_controls <- " + roa + ebitda_at + log(at_thousand) + altman_Z + tangibility + current_ratio" # the potential controls
      fml_base_fe <- " | gvkey + indexyear + ff_30ind_name^indexyear" # fixed effects

      ## output formula:
      fml_output <- paste(
        fml_base,
        ifelse(add_controls == TRUE, yes = fml_base_controls, no = ""),
        fml_base_fe,
        sep = ""
      )

      return(fml_output)
    })
  ) %>%
  as_tibble() %>%
  ## assign a name for each regression:
  mutate(name = paste("(", 1:nrow(.), ")", sep = "")) %>%
  select(name, everything())

## construct the data used for the loop:
data_did_loop <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

data_did_loop_balanced <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

## store all results
fml_results <- fml_parameters %>%
  apply(MARGIN = 1, FUN = function(parameters) {
    ## parameters:
    is_balanced <- parameters[4]
    fml_formula <- parameters[5]

    ## data:
    if (is_balanced == TRUE) {
      data <- data_did_loop_balanced
    } else {
      data <- data_did_loop
    }

    ## regression:
    did_model <- fixest::feols(fml = formula(fml_formula),
                  data = data,
                  cluster = c("gvkey", "ff_30ind_name")
                  )
    return(did_model)
  })

### DiD result using post-:
fml_results %>%
  `names<-`(value = unlist(fml_parameters[,1])) %>%
  etable(
    order = "post",
    # keep = "post",
    extralines = list(
      ## Controls:
      "^_Controls" = ifelse(unlist(fml_parameters[,3]), yes = "Yes", no = "No"),
      ## the identity of the sample:
      "__Sample" = ifelse(unlist(fml_parameters[,4]), yes = "Balanced Panel", no = "Full Sample") # whether used a balanced panel or a full sample.
  )) %>%
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>%
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content
    bootstrap_options = c("striped", "condensed")
  )
land_intensity: 
DiD Results with `land_intensity`
(1) (2) (3) (4) (5) (6) (7) (8)
Dependent Var.: book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage
post_2005 x intensity_2000 -0.0294 (0.0302) -0.0518 (0.0588) -0.0095 (0.0333) -0.0153 (0.0532)
post_2005 x treated -0.0205*** (0.0033) -0.0128** (0.0035) -0.0138*** (0.0033) -0.0048 (0.0037)
roa 8.13e-5* (3.24e-5) 8.36e-5* (3.23e-5) -0.0020 (0.0013) -0.0020 (0.0013)
ebitda_at 0.0001 (0.0001) 0.0001 (0.0001) 0.0013 (0.0019) 0.0013 (0.0019)
log(at_thousand) 0.0104. (0.0055) 0.0100. (0.0056) 0.0210** (0.0067) 0.0208** (0.0067)
altman_Z -5.98e-7*** (1.46e-7) -5.47e-7*** (1.31e-7) -6.75e-7*** (1.78e-7) -6.55e-7*** (1.73e-7)
tangibility 0.2182*** (0.0293) 0.2159*** (0.0294) 0.2048*** (0.0251) 0.2038*** (0.0250)
current_ratio -9.47e-5** (3.27e-5) -9.48e-5** (3.25e-5) -5.92e-5** (2.12e-5) -5.93e-5** (2.12e-5)
Controls No Yes No Yes No Yes No Yes
Fixed-Effects: ---------------- --------------------- ------------------- --------------------- ---------------- --------------------- ------------------- ---------------------
gvkey Yes Yes Yes Yes Yes Yes Yes Yes
indexyear Yes Yes Yes Yes Yes Yes Yes Yes
ff_30ind_name-indexyear Yes Yes Yes Yes Yes Yes Yes Yes
__________________________ ________________ _____________________ ___________________ _____________________ ________________ _____________________ ___________________ _____________________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3.
Observations 26,763 24,239 26,763 24,239 19,560 17,929 19,560 17,929
R2 0.79302 0.77023 0.79338 0.77038 0.78508 0.76774 0.78531 0.76777
Within R2 4.63e-5 0.02136 0.00179 0.02198 7.66e-6 0.02320 0.00110 0.02332
Sample Full Sample Full Sample Full Sample Full Sample Balanced Panel Balanced Panel Balanced Panel Balanced Panel

From the table results using land_intensity, the treatment effect is indifferent from zero if using the intensity measure and the it is significantly negative if we use the treatment dummy, which is one if the intensity is positive and zero otherwise.

DiD plot:

Show the code
## create the combinations of parameters:
fml_parameters <- expand_grid(
  choice_treatment = c("intensity_2000", "treated"), # what is the treatment measure: continuous/binary
  controls_inclusion = c(FALSE, TRUE),# whether to include controls
  balanced_panel = c(FALSE, TRUE), # whether keep a balanced panel
) %>%
  arrange(balanced_panel) %>%
  cbind.data.frame(.,
    fml = apply(X = ., MARGIN = 1, FUN = function(parameters) {
      ## parameters:
      choice_treatment <- parameters[1]
      add_controls <- parameters[2]
      is_balanced <- parameters[3]

      ## inputs:
      fml_base <- paste("book_leverage ~ i(indexyear, ", choice_treatment, ", ref = -1)", sep = "") # the baseline model
      fml_base_controls <- " + roa + ebitda_at + log(at_thousand) + altman_Z + tangibility + current_ratio" # the potential controls
      fml_base_fe <- " | gvkey + indexyear + ff_30ind_name^indexyear" # fixed effects

      ## output formula:
      fml_output <- paste(
        fml_base,
        ifelse(add_controls == TRUE, yes = fml_base_controls, no = ""),
        fml_base_fe,
        sep = ""
      )

      return(fml_output)
    })
  ) %>%
  as_tibble() %>%
  ## assign a name for each regression:
  mutate(name = paste("(", letters[1:nrow(.)], ")", sep = "")) %>%
  select(name, everything())

fml_parameters
# A tibble: 8 × 5
  name  choice_treatment controls_inclusion balanced_panel fml                  
  <chr> <chr>            <lgl>              <lgl>          <chr>                
1 (a)   intensity_2000   FALSE              FALSE          book_leverage ~ i(in…
2 (b)   intensity_2000   TRUE               FALSE          book_leverage ~ i(in…
3 (c)   treated          FALSE              FALSE          book_leverage ~ i(in…
4 (d)   treated          TRUE               FALSE          book_leverage ~ i(in…
5 (e)   intensity_2000   FALSE              TRUE           book_leverage ~ i(in…
6 (f)   intensity_2000   TRUE               TRUE           book_leverage ~ i(in…
7 (g)   treated          FALSE              TRUE           book_leverage ~ i(in…
8 (h)   treated          TRUE               TRUE           book_leverage ~ i(in…
Show the code
## construct the data used for the loop:
data_did_loop <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

data_did_loop_balanced <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

## store all results
fml_results <- fml_parameters %>%
  apply(MARGIN = 1, FUN = function(parameters) {
    ## parameters:
    is_balanced <- parameters[4]
    fml_formula <- parameters[5]

    ## data:
    if (is_balanced == TRUE) {
      data <- data_did_loop_balanced
    } else {
      data <- data_did_loop
    }

    ## regression:
    did_model <- fixest::feols(fml = formula(fml_formula),
                  data = data,
                  cluster = c("gvkey", "ff_30ind_name")
                  )
    return(did_model)
  })
NOTE: 3,273 observations removed because of NA and infinite values (RHS: 3,273).
NOTE: 3,273 observations removed because of NA and infinite values (RHS: 3,273).
NOTE: 1,969 observations removed because of NA and infinite values (RHS: 1,969).
NOTE: 1,969 observations removed because of NA and infinite values (RHS: 1,969).
Show the code
### create the table:
fml_results %>%
  `names<-`(value = unlist(fml_parameters[,1])) %>%
  etable(
    order = "indexyear",
    # keep = "post",
    extralines = list(
      ## Controls:
      "^_Controls" = ifelse(unlist(fml_parameters[,3]), yes = "Yes", no = "No"),
      ## the identity of the sample:
      "__Sample" = ifelse(unlist(fml_parameters[,4]), yes = "Balanced Panel", no = "Full Sample") # whether used a balanced panel or a full sample.
  )) %>%
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>%
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content
    bootstrap_options = c("striped", "condensed")
  )
DiD Results with `land_intensity`
(a) (b) (c) (d) (e) (f) (g) (h)
Dependent Var.: book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage
intensity_2000 x indexyear = -3 0.0177 (0.0387) 0.0549 (0.0577) -0.0426 (0.0540) -0.0079 (0.0745)
intensity_2000 x indexyear = -2 -0.0020 (0.0184) -0.0362 (0.0335) -0.0311 (0.0278) -0.0585 (0.0364)
intensity_2000 x indexyear = 0 0.0345 (0.0351) -0.0061 (0.0765) 0.0156 (0.0241) -0.0076 (0.0664)
intensity_2000 x indexyear = 1 -0.0273 (0.0406) -0.0527 (0.0979) -0.0162 (0.0418) -0.0275 (0.0952)
intensity_2000 x indexyear = 2 -0.0327 (0.0344) -0.0783 (0.0708) -0.0328 (0.0339) -0.0770 (0.0646)
intensity_2000 x indexyear = 3 0.0111 (0.0390) -0.0229 (0.0788) 0.0049 (0.0304) -0.0195 (0.0561)
treated x indexyear = -3 0.0294*** (0.0060) 0.0300*** (0.0061) 0.0223*** (0.0057) 0.0253*** (0.0067)
treated x indexyear = -2 0.0031 (0.0033) -9.03e-5 (0.0037) 0.0034 (0.0043) 0.0024 (0.0050)
treated x indexyear = 0 -0.0123*** (0.0033) -0.0144** (0.0043) -0.0123*** (0.0032) -0.0120*** (0.0030)
treated x indexyear = 1 -0.0253*** (0.0042) -0.0227*** (0.0046) -0.0140** (0.0049) -0.0081 (0.0054)
treated x indexyear = 2 -0.0217*** (0.0050) -0.0137* (0.0052) -0.0193** (0.0056) -0.0097 (0.0059)
treated x indexyear = 3 -0.0166** (0.0052) -0.0088 (0.0058) -0.0168*** (0.0044) -0.0080 (0.0049)
roa 4.73e-5 (3.22e-5) 5.5e-5 (3.24e-5) -0.0026. (0.0013) -0.0026. (0.0013)
ebitda_at 9.01e-5 (0.0001) 9.5e-5 (0.0001) 0.0021 (0.0020) 0.0022 (0.0019)
log(at_thousand) 0.0081 (0.0052) 0.0078 (0.0053) 0.0185** (0.0059) 0.0180** (0.0058)
altman_Z -6.38e-7** (1.9e-7) -5.51e-7** (1.72e-7) -6.47e-7** (2.14e-7) -5.67e-7** (2.01e-7)
tangibility 0.2303*** (0.0234) 0.2253*** (0.0236) 0.2000*** (0.0211) 0.1954*** (0.0212)
current_ratio -0.0001* (4.66e-5) -0.0001* (4.52e-5) -7.48e-5* (3.07e-5) -7.7e-5* (2.93e-5)
Controls No Yes No Yes No Yes No Yes
Fixed-Effects: ---------------- ------------------- ------------------- -------------------- ---------------- -------------------- ------------------- --------------------
gvkey Yes Yes Yes Yes Yes Yes Yes Yes
indexyear Yes Yes Yes Yes Yes Yes Yes Yes
ff_30ind_name-indexyear Yes Yes Yes Yes Yes Yes Yes Yes
_______________________________ ________________ ___________________ ___________________ ____________________ ________________ ____________________ ___________________ ____________________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3.
Observations 32,814 29,541 32,814 29,541 22,820 20,851 22,820 20,851
R2 0.77545 0.75242 0.77655 0.75346 0.76320 0.74690 0.76410 0.74765
Within R2 9.82e-5 0.02380 0.00498 0.02789 0.00013 0.02300 0.00394 0.02587
Sample Full Sample Full Sample Full Sample Full Sample Balanced Panel Balanced Panel Balanced Panel Balanced Panel
Show the code
### create the plots:
# fml_parameters[which(unlist(fml_parameters$balanced_panel)), ]
fml_results[which(unlist(fml_parameters$balanced_panel))] %>% # choose the balanced panel
  iplot(.,
        xlab = paste("Time to treatment (Year; 0 = ", base_year, ")", sep = ""),
        main = paste("Treatment Effects by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Balanced Panel",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE,
        xlim = c(period_start - n_pre - base_year - 0.5, period_end - base_year + 0.5)
        ); axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5)); abline(v = 0.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2, 3, 4), pch = c(20, 17, 15, 21), legend = c('intensity', 'intensity + controls', 'dummy', 'dummy + controls'));

Show the code
fml_results[which(!unlist(fml_parameters$balanced_panel))] %>% # choose full sample
  iplot(.,
        xlab = paste("Time to treatment (Year; 0 = ", base_year, ")", sep = ""),
        main = paste("Treatment Effect by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Full Sample",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE,
        xlim = c(period_start - n_pre - base_year - 0.5, period_end - base_year + 0.5)
        ); axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5)); abline(v = 0.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2, 3, 4), pch = c(20, 17, 15, 21), legend = c('intensity', 'intensity + controls', 'dummy', 'dummy + controls'))

Results using land_intensity are much noisier. The treatment effects are indifferent from zero when using the intensity measure and are negative when using the treatment dummy. However, there seems to be a pre-trend before the time of treatment. This is further shown in the plots.

s3.4. building and land intensity

bnl_intensity is chosen to measure a firm’s long-term exposure to buildings, land and their improvements at cost under the PPE.

Show the code
## choose the group definition:
intensity_measure_name <- candidate_intensity_measure[5]

data_firm <- data %>%
  filter(fyear == intensity_measure_year) %>% # use `fyear` may create multiple observations for the same firm. E.g. filter(gvkey == 23535, dyear == 2005)
  group_by(fyear) %>%
  mutate(
    median_at = median(at, na.rm = TRUE),
    # median_cf = median(debt_ebitda, na.rm = TRUE)
    ) %>%
  ungroup() %>%
  ## different grouping variables in DDD analysis:
  mutate(
    large = ifelse(at > median_at, 1, 0),
    # tangible = ifelse(tangibility > 0, yes = "tangible", no = "non-tangible"),
    # high_cf = ifelse(debt_ebitda < median_cf, yes = "high CF", no = "low CF")
  ) %>%
  select(gvkey, intensity_2000 = all_of(intensity_measure_name), large)

data_did <- data %>%
  ## merge the grouping variable
  left_join(y = data_firm, by = join_by(gvkey) ) %>%
  ## merge the FF 30 industry classifiaction
  left_join(y = FF_30ind, by = join_by(sic)) %>%
  ## exclude certain industries
  filter(
    ff_30ind != 20, # exclude Utiltiy (number 20)
    !(sic >= 6000 & sic <= 6199) # exclude banks under Banking, Insurance, Real Estate, Trading (number 29)
  ) %>%
  ## pre- & post-
  mutate(
    indexyear = (fyear - base_year), # year index with 2005 as base 0.
    post_2005 = as.numeric(fyear > base_year)  # whether it is after the 2005 reform
  )

## gvkey(s) for balanced panel":
data_did_balanced_id <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  group_by(gvkey) %>%
  summarise(count_obs = sum(!is.na(book_leverage) & !is.na(intensity_2000))) %>%
  ungroup() %>%
  filter(count_obs == period_end - period_start + 1 + n_pre) %>%
  .$gvkey

data_intensity_panel <- data %>%
  filter(fyear < 2007) %>%
  select(gvkey, fyear, all_of(intensity_measure_name)) %>%
  pivot_wider(names_from = fyear, values_from = all_of(intensity_measure_name))

DiD Analysis:

In this part of the analysis, I also added the firm-year controls in the DiD and triple difference analyses. The first is called àt_thousand, which is the total asset of firm i in fiscal year t in thousand of dollars. The second is the ebitda_at, which is the EBITDA of firm i in fiscal year t divided by its total asset. Adding both controls positively correlated with the book leverage, they do not have a significant impact on the coefficient estimate of interest, which is the coefficient on treated x post_2005 and intensity_2000 x post_2005.

Show the code
cat(intensity_measure_name); cat(": \n");

## create the combinations of parameters:
fml_parameters <- expand_grid(
  choice_treatment = c("intensity_2000", "treated"), # what is the treatment measure: continuous/binary
  controls_inclusion = c(FALSE, TRUE),# whether to include controls
  balanced_panel = c(FALSE, TRUE), # whether keep a balanced panel
) %>%
  arrange(balanced_panel) %>%
  cbind.data.frame(.,
    fml = apply(X = ., MARGIN = 1, FUN = function(parameters) {
      ## parameters:
      choice_treatment <- parameters[1]
      add_controls <- parameters[2]
      is_balanced <- parameters[3]

      ## inputs:
      fml_base <- paste("book_leverage ~ post_2005*", choice_treatment, sep = "") # the baseline model
      fml_base_controls <- " + roa + ebitda_at + log(at_thousand) + altman_Z + tangibility + current_ratio" # the potential controls
      fml_base_fe <- " | gvkey + indexyear + ff_30ind_name^indexyear" # fixed effects

      ## output formula:
      fml_output <- paste(
        fml_base,
        ifelse(add_controls == TRUE, yes = fml_base_controls, no = ""),
        fml_base_fe,
        sep = ""
      )

      return(fml_output)
    })
  ) %>%
  as_tibble() %>%
  ## assign a name for each regression:
  mutate(name = paste("(", 1:nrow(.), ")", sep = "")) %>%
  select(name, everything())

## construct the data used for the loop:
data_did_loop <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

data_did_loop_balanced <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

## store all results
fml_results <- fml_parameters %>%
  apply(MARGIN = 1, FUN = function(parameters) {
    ## parameters:
    is_balanced <- parameters[4]
    fml_formula <- parameters[5]

    ## data:
    if (is_balanced == TRUE) {
      data <- data_did_loop_balanced
    } else {
      data <- data_did_loop
    }

    ## regression:
    did_model <- fixest::feols(fml = formula(fml_formula),
                  data = data,
                  cluster = c("gvkey", "ff_30ind_name")
                  )
    return(did_model)
  })

### DiD result using post-:
fml_results %>%
  `names<-`(value = unlist(fml_parameters[,1])) %>%
  etable(
    order = "post",
    # keep = "post",
    extralines = list(
      ## Controls:
      "^_Controls" = ifelse(unlist(fml_parameters[,3]), yes = "Yes", no = "No"),
      ## the identity of the sample:
      "__Sample" = ifelse(unlist(fml_parameters[,4]), yes = "Balanced Panel", no = "Full Sample") # whether used a balanced panel or a full sample.
  )) %>%
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>%
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content
    bootstrap_options = c("striped", "condensed")
  ) %>%
  kableExtra::footnote(
    general = "Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1",
    general_title = "Note:"
  )
bnl_intensity: 
DiD Results with `bnl_intensity`
(1) (2) (3) (4) (5) (6) (7) (8)
Dependent Var.: book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage
post_2005 x intensity_2000 -0.0535*** (0.0116) -0.0389* (0.0149) -0.0554*** (0.0119) -0.0369** (0.0123)
post_2005 x treated -0.0215*** (0.0036) -0.0143** (0.0040) -0.0156*** (0.0038) -0.0069 (0.0048)
roa 8.23e-5* (3.21e-5) 8.47e-5* (3.25e-5) -0.0020 (0.0013) -0.0020 (0.0013)
ebitda_at 0.0001 (0.0001) 0.0001 (0.0001) 0.0013 (0.0019) 0.0013 (0.0019)
log(at_thousand) 0.0103. (0.0055) 0.0100. (0.0055) 0.0207** (0.0066) 0.0208** (0.0067)
altman_Z -5.7e-7*** (1.43e-7) -5.38e-7*** (1.31e-7) -6.39e-7** (1.76e-7) -6.4e-7*** (1.7e-7)
tangibility 0.2149*** (0.0293) 0.2153*** (0.0295) 0.2008*** (0.0250) 0.2031*** (0.0248)
current_ratio -9.44e-5** (3.25e-5) -9.45e-5** (3.24e-5) -5.9e-5** (2.11e-5) -5.91e-5** (2.11e-5)
Controls No Yes No Yes No Yes No Yes
Fixed-Effects: ------------------- -------------------- ------------------- --------------------- ------------------- -------------------- ------------------- --------------------
gvkey Yes Yes Yes Yes Yes Yes Yes Yes
indexyear Yes Yes Yes Yes Yes Yes Yes Yes
ff_30ind_name-indexyear Yes Yes Yes Yes Yes Yes Yes Yes
__________________________ ___________________ ____________________ ___________________ _____________________ ___________________ ____________________ ___________________ ____________________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3.
Observations 26,664 24,172 26,664 24,172 19,482 17,875 19,482 17,875
R2 0.79229 0.76974 0.79243 0.76981 0.78451 0.76745 0.78441 0.76735
Within R2 0.00131 0.02183 0.00196 0.02210 0.00187 0.02389 0.00139 0.02347
Sample Full Sample Full Sample Full Sample Full Sample Balanced Panel Balanced Panel Balanced Panel Balanced Panel
Note:
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

DiD analysis:

Show the code
## create the combinations of parameters:
fml_parameters <- expand_grid(
  choice_treatment = c("intensity_2000", "treated"), # what is the treatment measure: continuous/binary
  controls_inclusion = c(FALSE, TRUE),# whether to include controls
  balanced_panel = c(FALSE, TRUE), # whether keep a balanced panel
) %>%
  arrange(balanced_panel) %>%
  cbind.data.frame(.,
    fml = apply(X = ., MARGIN = 1, FUN = function(parameters) {
      ## parameters:
      choice_treatment <- parameters[1]
      add_controls <- parameters[2]
      is_balanced <- parameters[3]

      ## inputs:
      fml_base <- paste("book_leverage ~ i(indexyear, ", choice_treatment, ", ref = -1)", sep = "") # the baseline model
      fml_base_controls <- " + roa + ebitda_at + log(at_thousand) + altman_Z + tangibility + current_ratio" # the potential controls
      fml_base_fe <- " | gvkey + indexyear + ff_30ind_name^indexyear" # fixed effects

      ## output formula:
      fml_output <- paste(
        fml_base,
        ifelse(add_controls == TRUE, yes = fml_base_controls, no = ""),
        fml_base_fe,
        sep = ""
      )

      return(fml_output)
    })
  ) %>%
  as_tibble() %>%
  ## assign a name for each regression:
  mutate(name = paste("(", letters[1:nrow(.)], ")", sep = "")) %>%
  select(name, everything())

fml_parameters
# A tibble: 8 × 5
  name  choice_treatment controls_inclusion balanced_panel fml                  
  <chr> <chr>            <lgl>              <lgl>          <chr>                
1 (a)   intensity_2000   FALSE              FALSE          book_leverage ~ i(in…
2 (b)   intensity_2000   TRUE               FALSE          book_leverage ~ i(in…
3 (c)   treated          FALSE              FALSE          book_leverage ~ i(in…
4 (d)   treated          TRUE               FALSE          book_leverage ~ i(in…
5 (e)   intensity_2000   FALSE              TRUE           book_leverage ~ i(in…
6 (f)   intensity_2000   TRUE               TRUE           book_leverage ~ i(in…
7 (g)   treated          FALSE              TRUE           book_leverage ~ i(in…
8 (h)   treated          TRUE               TRUE           book_leverage ~ i(in…
Show the code
## construct the data used for the loop:
data_did_loop <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    large = ifelse(large, yes = "Large", no = "Small"),
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    # large = ifelse(large, yes = 1, no = 0),
    treated_large = paste(treated, large, sep = "_")
  )

data_did_loop_balanced <- data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005,
         book_leverage, debt_ebitda, sic, ff_30ind_name,
         at, ebitda, large, roa, ppent, bnl_intensity, ppe_lease_intensity,
         altman_Z, kz, market_book, tangibility, current_ratio) %>%
  filter(fyear >= period_start - n_pre & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
    gvkey = as.factor(gvkey),
    fyear = as.factor(fyear),
    # treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
    treated = ifelse(intensity_2000 > 0, 1, 0),
    ebitda_at = ebitda / at,
    at_thousand = at * 10^-3,
    tangiblity_exbnl = tangibility - bnl_intensity,
    bnl = bnl_intensity * at,
    treated_large = paste(treated, large, sep = "_"),
    ## grouping variables
    large = ifelse(large, yes = "Large", no = "Small")
  )

## store all results
fml_results <- fml_parameters %>%
  apply(MARGIN = 1, FUN = function(parameters) {
    ## parameters:
    is_balanced <- parameters[4]
    fml_formula <- parameters[5]

    ## data:
    if (is_balanced == TRUE) {
      data <- data_did_loop_balanced
    } else {
      data <- data_did_loop
    }

    ## regression:
    did_model <- fixest::feols(fml = formula(fml_formula),
                  data = data,
                  cluster = c("gvkey", "ff_30ind_name")
                  )
    return(did_model)
  })
NOTE: 3,233 observations removed because of NA and infinite values (RHS: 3,233).
NOTE: 3,233 observations removed because of NA and infinite values (RHS: 3,233).
NOTE: 1,941 observations removed because of NA and infinite values (RHS: 1,941).
NOTE: 1,941 observations removed because of NA and infinite values (RHS: 1,941).
Show the code
### create the table:
fml_results %>%
  `names<-`(value = unlist(fml_parameters[,1])) %>%
  etable(
    order = "indexyear",
    # keep = "post",
    extralines = list(
      ## Controls:
      "^_Controls" = ifelse(unlist(fml_parameters[,3]), yes = "Yes", no = "No"),
      ## the identity of the sample:
      "__Sample" = ifelse(unlist(fml_parameters[,4]), yes = "Balanced Panel", no = "Full Sample") # whether used a balanced panel or a full sample.
  )) %>%
  knitr::kable(format = "html", caption = paste("DiD Results with `", intensity_measure_name, "`", sep = "")) %>%
  kableExtra::kable_styling(
    font_size = 8,       # Smaller font (default is 16px)
    full_width = FALSE,   # Table width fits content
    bootstrap_options = c("striped", "condensed")
  )
DiD Results with `bnl_intensity`
(a) (b) (c) (d) (e) (f) (g) (h)
Dependent Var.: book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage book_leverage
intensity_2000 x indexyear = -3 0.0277 (0.0164) 0.0291. (0.0153) 0.0105 (0.0247) 0.0179 (0.0286)
intensity_2000 x indexyear = -2 0.0037 (0.0076) -0.0099 (0.0123) 0.0006 (0.0120) -0.0040 (0.0132)
intensity_2000 x indexyear = 0 -0.0279* (0.0128) -0.0317* (0.0125) -0.0348* (0.0133) -0.0380*** (0.0093)
intensity_2000 x indexyear = 1 -0.0643*** (0.0144) -0.0595*** (0.0161) -0.0636*** (0.0113) -0.0504*** (0.0117)
intensity_2000 x indexyear = 2 -0.0592*** (0.0150) -0.0449. (0.0222) -0.0771*** (0.0145) -0.0612*** (0.0164)
intensity_2000 x indexyear = 3 -0.0510* (0.0190) -0.0381 (0.0279) -0.0598** (0.0169) -0.0447* (0.0216)
treated x indexyear = -3 0.0291*** (0.0058) 0.0296*** (0.0061) 0.0201*** (0.0053) 0.0236** (0.0066)
treated x indexyear = -2 0.0031 (0.0032) 0.0008 (0.0036) 0.0025 (0.0040) 0.0017 (0.0046)
treated x indexyear = 0 -0.0079* (0.0031) -0.0102* (0.0042) -0.0113** (0.0034) -0.0110** (0.0033)
treated x indexyear = 1 -0.0233*** (0.0046) -0.0211*** (0.0051) -0.0150** (0.0051) -0.0091 (0.0059)
treated x indexyear = 2 -0.0201*** (0.0049) -0.0122* (0.0050) -0.0199** (0.0057) -0.0100 (0.0065)
treated x indexyear = 3 -0.0190** (0.0052) -0.0120. (0.0064) -0.0206*** (0.0051) -0.0126* (0.0058)
roa 5.04e-5 (3.18e-5) 5.23e-5 (3.19e-5) -0.0026. (0.0013) -0.0026. (0.0013)
ebitda_at 9.12e-5 (10e-5) 9.73e-5 (0.0001) 0.0022 (0.0020) 0.0022 (0.0019)
log(at_thousand) 0.0080 (0.0052) 0.0077 (0.0052) 0.0181** (0.0058) 0.0180** (0.0058)
altman_Z -5.99e-7** (1.83e-7) -5.42e-7** (1.71e-7) -5.95e-7** (2.09e-7) -5.57e-7** (1.99e-7)
tangibility 0.2250*** (0.0236) 0.2244*** (0.0242) 0.1940*** (0.0209) 0.1951*** (0.0213)
current_ratio -0.0001* (4.61e-5) -0.0001* (4.52e-5) -7.55e-5* (2.99e-5) -7.73e-5* (2.93e-5)
Controls No Yes No Yes No Yes No Yes
Fixed-Effects: ------------------- -------------------- ------------------- -------------------- ------------------- -------------------- ------------------- --------------------
gvkey Yes Yes Yes Yes Yes Yes Yes Yes
indexyear Yes Yes Yes Yes Yes Yes Yes Yes
ff_30ind_name-indexyear Yes Yes Yes Yes Yes Yes Yes Yes
_______________________________ ___________________ ____________________ ___________________ ____________________ ___________________ ____________________ ___________________ ____________________
S.E.: Clustered by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3. by: gvkey & ff_3.
Observations 32,693 29,460 32,693 29,460 22,729 20,788 22,729 20,788
R2 0.77506 0.75229 0.77570 0.75298 0.76272 0.74674 0.76306 0.74711
Within R2 0.00181 0.02463 0.00465 0.02734 0.00241 0.02437 0.00385 0.02579
Sample Full Sample Full Sample Full Sample Full Sample Balanced Panel Balanced Panel Balanced Panel Balanced Panel
Show the code
### create the plots:
# fml_parameters[which(unlist(fml_parameters$balanced_panel)), ]
fml_results[which(unlist(fml_parameters$balanced_panel))] %>% # choose the balanced panel
  iplot(.,
        xlab = paste("Time to treatment (Year; 0 = ", base_year, ")", sep = ""),
        main = paste("Treatment Effects by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Balanced Panel",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE,
        xlim = c(period_start - n_pre - base_year - 0.5, period_end - base_year + 0.5)
        ); axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5)); abline(v = 0.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2, 3, 4), pch = c(20, 17, 15, 21), legend = c('intensity', 'intensity + controls', 'dummy', 'dummy + controls'));

Show the code
fml_results[which(!unlist(fml_parameters$balanced_panel))] %>% # choose full sample
  iplot(.,
        xlab = paste("Time to treatment (Year; 0 = ", base_year, ")", sep = ""),
        main = paste("Treatment Effect by fiscal year: `", intensity_measure_name, "`", sep = ""),
        sub = "Data: Full Sample",
        ref.line = FALSE,
        ref.line.par = list(col = "red", lty = 2),
        pt.join = FALSE,
        xlim = c(period_start - n_pre - base_year - 0.5, period_end - base_year + 0.5)
        ); axis(1, at = (period_start - n_pre - base_year):(period_end - base_year + 0.5)); abline(v = 0.5, col = "red", lty = 2, lwd = 3); legend('bottomleft', bty = "n", col = c(1, 2, 3, 4), pch = c(20, 17, 15, 21), legend = c('intensity', 'intensity + controls', 'dummy', 'dummy + controls'))

Check the trend of movement in the intensity measure:

Show the code
### Observation summary:
cat("#### Number of Observations in Each Group over time (Full Sample): \n")
#### Number of Observations in Each Group over time (Full Sample): 
Show the code
data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  # filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005, book_leverage, debt_ebitda, sic, ff_30ind_name, at, ebitda, large, roa) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
  gvkey = as.factor(gvkey),
  fyear = as.factor(fyear),
  treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
  # treated = ifelse(intensity_2000 > 0, 1, 0),
  ebitda_at = ebitda / at,
  at_thousand = at * 10^-3,
  large = factor(ifelse(large, yes = "Large", no = "Small"), levels = c("Large", "Small") ),
  # large = ifelse(large, yes = 1, no = 0),
  treated_large = paste(treated, large, sep = "_")
  ) %>%
  group_by(treated_large, fyear) %>%
  summarise(n = n()) %>%
  ungroup() %>%
  # mutate(
  #   Treated = str_extract(string = treated_large, pattern = "^[^_]+"),
  #   Size = str_extract(string = treated_large, pattern = "[^_]+$")
  #   ) %>%
  pivot_wider(names_from = treated_large, values_from = n) %>%
  gt(caption = "Number of Observations in each group between 2002 and 2007") %>%
  tab_style(
    style = cell_text(size = "x-small"),  # Reduce font size
    locations = cells_column_labels(columns = everything()) # reduce the size of tab headers
  ) %>%
  tab_style(
    style = cell_text(size = "x-small"),  # Reduce font size
    locations = cells_body()
  )
Number of Observations in each group between 2002 and 2007
fyear Treated_Large Treated_Small Untreated_Large Untreated_Small
2002 1863 948 555 2050
2003 1761 859 495 1826
2004 1666 791 449 1693
2005 1555 725 422 1549
2006 1452 671 371 1403
2007 1333 617 340 1270
Show the code
cat("#### Number of Observations in Each Group over time (Balanced Panel): \n")
#### Number of Observations in Each Group over time (Balanced Panel): 
Show the code
data_did %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(gvkey %in% data_did_balanced_id) %>%
  # filter(intensity_2000 > 0) %>%
  select(gvkey, fyear, indexyear, intensity_2000, post_2005, book_leverage, debt_ebitda, sic, ff_30ind_name, at, ebitda, large, roa) %>%
  filter(fyear >= period_start & fyear <= period_end) %>%
  filter(!is.na(intensity_2000) & !is.na(at)) %>%
  mutate(
  gvkey = as.factor(gvkey),
  fyear = as.factor(fyear),
  treated = ifelse(intensity_2000 > 0, "Treated", "Untreated"),
  # treated = ifelse(intensity_2000 > 0, 1, 0),
  ebitda_at = ebitda / at,
  at_thousand = at * 10^-3,
  large = factor(ifelse(large, yes = "Large", no = "Small"), levels = c("Large", "Small") ),
  # large = ifelse(large, yes = 1, no = 0),
  treated_large = paste(treated, large, sep = "_")
  ) %>%
  group_by(treated_large, fyear) %>%
  summarise(n = n()) %>%
  ungroup() %>%
  pivot_wider(names_from = treated_large, values_from = n) %>%
  gt(caption = "Number of Observations in each group between 2002 and 2007") %>%
  tab_style(
    style = cell_text(size = "x-small"),  # Reduce font size
    locations = cells_column_labels(columns = everything()) # reduce the size of tab headers
  ) %>%
  tab_style(
    style = cell_text(size = "x-small"),  # Reduce font size
    locations = cells_body()
  )
Number of Observations in each group between 2002 and 2007
fyear Treated_Large Treated_Small Untreated_Large Untreated_Small
2002 1280 576 324 1067
2003 1280 576 324 1067
2004 1280 576 324 1067
2005 1280 576 324 1067
2006 1280 576 324 1067
2007 1280 576 324 1067
Show the code
cat("`bnl_intensity`: \n")
`bnl_intensity`: 
Show the code
data %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(fyear >= intensity_measure_year & fyear <= period_end) %>%
  select(gvkey, fyear, all_of(intensity_measure_name)) %>%
  pivot_wider(names_from = fyear, values_from = all_of(intensity_measure_name)) %>%
  column_to_rownames(var = "gvkey") %>% # convert into rownames
  round(digits = 6) %>%
  na.omit() %>%
  head(20)
         2000     2001     2002     2003     2004     2005     2006     2007
1004 0.109925 0.108170 0.108367 0.090809 0.080233 0.064026 0.069679 0.084466
1021 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1034 0.095755 0.085633 0.098100 0.109003 0.128727 0.061396 0.115526 0.096297
1050 0.131387 0.136394 0.155087 0.135856 0.128910 0.131329 0.089732 0.060413
1062 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1072 0.106598 0.129059 0.137992 0.146348 0.160801 0.160973 0.156375 0.168714
1078 0.143917 0.110799 0.112253 0.112998 0.099345 0.103850 0.102737 0.102812
1082 0.375528 0.661385 0.818204 0.667496 0.611982 0.599924 0.709494 0.489888
1094 0.000000 0.000000 0.000000 0.000000 0.002178 0.022419 0.000018 0.015997
1096 0.828436 0.785170 0.869140 0.862246 0.879633 0.891396 0.746847 0.773825
1097 0.141147 0.146789 0.131890 0.121762 0.117395 0.123977 0.132147 0.141016
1104 0.103561 0.111139 0.141933 0.143785 0.132426 0.110165 0.083864 0.074511
1109 0.172354 0.170392 0.203393 0.202864 0.140946 0.130897 0.166074 0.111574
1111 0.011718 0.007991 0.007761 0.005095 0.004037 0.003540 0.003081 0.002584
1117 0.000000 0.005561 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1161 0.251989 0.264631 0.254025 0.329692 0.322195 0.144987 0.111280 0.094026
1173 0.182648 0.181556 0.241647 0.225388 0.238369 0.222096 0.258697 0.128344
1209 0.098277 0.100494 0.101460 0.102376 0.095156 0.096130 0.090790 0.087199
1228 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1234 0.189732 0.191952 0.167563 0.174638 0.158038 0.245521 0.357150 0.346692
Show the code
cat("`book_leverage`: \n")
`book_leverage`: 
Show the code
data %>%
  filter(book_leverage >= 0 & book_leverage <= 1) %>%
  filter(fyear >= intensity_measure_year & fyear <= period_end) %>%
  select(gvkey, fyear, book_leverage) %>%
  pivot_wider(names_from = fyear, values_from = book_leverage) %>%
  column_to_rownames(var = "gvkey") %>% # convert into rownames
  round(digits = 6) %>%
  na.omit() %>%
  head(20)
         2000     2001     2002     2003     2004     2005     2006     2007
1004 0.275896 0.366410 0.374171 0.355366 0.315344 0.327808 0.307087 0.389800
1013 0.011334 0.001880 0.023160 0.314828 0.280302 0.260782 0.248231 0.227335
1021 0.436768 0.464968 0.366115 0.458637 0.268054 0.082792 0.000000 0.234036
1034 0.326074 0.443761 0.390025 0.350821 0.350195 0.256678 0.000000 0.241454
1045 0.239194 0.322950 0.435392 0.474940 0.498036 0.498220 0.459427 0.389976
1050 0.534511 0.403809 0.392527 0.376197 0.370203 0.336014 0.245173 0.048760
1062 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1072 0.013737 0.009064 0.002012 0.000016 0.000000 0.000000 0.000000 0.000000
1075 0.349877 0.401539 0.387488 0.357503 0.330733 0.265757 0.285440 0.322986
1078 0.101799 0.312873 0.264751 0.224204 0.235704 0.227633 0.343050 0.307542
1082 0.531551 0.550577 0.489912 0.463896 0.464892 0.428487 0.456049 0.388829
1094 0.017597 0.116427 0.065755 0.026603 0.006680 0.004201 0.003001 0.002785
1096 0.544320 0.553017 0.562115 0.565844 0.569743 0.651411 0.632386 0.644374
1097 0.246810 0.224277 0.176378 0.144280 0.117324 0.102331 0.087648 0.071132
1104 0.355763 0.283349 0.290962 0.246117 0.064149 0.198163 0.292025 0.241343
1109 0.307899 0.399875 0.329045 0.244701 0.257918 0.098786 0.180593 0.208470
1111 0.204558 0.005908 0.003998 0.000000 0.000000 0.000000 0.000000 0.000000
1117 0.390891 0.403337 0.398258 0.361599 0.035546 0.000000 0.000000 0.000000
1121 0.026560 0.054949 0.056773 0.054575 0.048042 0.036701 0.010370 0.000000
1161 0.224966 0.177900 0.345518 0.295015 0.237002 0.188026 0.288811 0.456190

EndNotes

  • Use small firms with zero bnl_lease as the benchmark.

    • big firms with zero bnl_lease have similar level of leverage over time.

    • small firms with positive bnl_lease have significantly higher leverage before the treatment and significantly lower leverage afterwards.

    • big firms with positive bnl_lease have significantly higher leverage before the treatment and are indifferent from the benchmark after the treatment.

    • parallel trend assumption should hold.

  • For nice plots: ggiplot()

  • Measures for financial constraints are from Appendix A.2 > Section 2

    • Joan Farre-Mensa, Alexander Ljungqvist, Do Measures of Financial Constraints Measure Financial Constraints?, The Review of Financial Studies, Volume 29, Issue 2, February 2016, Pages 271–308, https://doi.org/10.1093/rfs/hhv052